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An automatic FORTRAN code generation and determination of energy eigenvalues for 
periodic potentials with wells and barriers are presented. These problems serve as test cases 
in developing tools and techniques for generation of numerically efficient FORTRAN software 
and for more general, efficient and flexible ways of programming. Several problems in different 
areas of science are described, and the advantages of the approach as well as limitations of 
the tools presently available are discussed. 0 1990 Academic Press. Inc. 

I. INTRODUCTION 

The standard procedure for many scientific computation problems, such 
mining eigenvalues of Schrodinger equation, is to combine numerical FQ 
library routines with the scientist’s own program to perform numerically 
subtasks such as numerical integration. By the mere availability of subroutines for 
a large variety of different purposes, FORTRAN has secured its status as the 
predominant language in scientific computations. Kowever, FORTRAN has so 
serious drawbacks which are difficult to cure. It is admittedly somewhat tedious to 
program and, more importantly, inclusion of branching such as IF-THEN struc- 
tures in the code must be paid for by loss of efficiency and, indeed, in many cases 
is totally impractical. The present article addresses these problem in the form of 
practical applications to the computation of eigenvalues for periodic potentials by 
phase integral methods. However, the aim is to develop techniques to combine the 
computational power of numerical FORTRAN software with more efficient and 
more general ways of programming provided by symbolic software. The general 
characterization of the problems that are relevant here is numerically intensive; that 
is, the most expensive part of the work is the actual execution of the code. If inter- 
active development and programming are the time consuming parts of the task, 
there already exist better alternatives to FORTRAN such as Matlab or Speakeasy, 
for instance. 

The phase integral quantization conditions for periodic potentials clearly exhibit 
the weaknesses of FORTRAN mentioned above: While the phase integral method 
[l-5] is a computationally efficient technique for calculating the eigenvalues of t 
one-dimensional Schrodinger equation, the phase integral quantization condition 
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for a periodic potential function, such as that for torsional vibration, is a trans- 
cendental equation involving phase integrals across the wells and barriers of the 
potential function, and is therefore potential-dependent; each different number of 
wells and barriers requires a new slightly different quantization condition. There- 
fore, a FORTRAN computer code for the present task, determination of eigen- 
values of arbitrary problem that has any number of wells and barriers would be 
impossible in principle and in practice, with the number of wells and barriers 
limited to realistic maximum values, it would at best be very clumsy and extensive. 
However, there is an elegant solution to this dilemma provided by recent develop- 
ments in symbolic computer languages and based on the fact that all various quan- 
tization conditions for problems with different number of wells and barriers can be 
written in a form of a matrix equation. A combination of a symbolic language, 
MACSYMA in the present case, and the existing efficient quadrature routines for 
evaluation of the phase integrals [6-81 written in FORTRAN, allow most of the 
logic to be handled under MACSYMA, while the final time consuming numerical 
computation is performed by FORTRAN. Furthermore, the FORTRAN window 
facility of MACSYMA, supported by some locally developed auxiliary routines, 
provides tools for automatic FORTRAN code generation. While the project started 
from the above-mentioned difficulty with the phase integral quantization condi- 
tions, it is now clear that by transferring all possible logic under MACSYMA, 
extremely efficient FORTRAN code can be generated. In practice, the number of 
logical decisions and the number of DO loops can be reduced considerably, a result 
which yields very simple code which compilers and optimisers can fully exploit. 
While the FORTRAN code can be saved for later use, it is actually treated as a 
disposable utility and the programmer never writes a single line of FORTRAN 
code, apart from the work in the past when the FORTRAN codes for the phase 
integral quadrature routines were generated. 

In the following, the physical problem of determining eigenvalues for various 
potentials by the phase integral method, is considered in Section II and the results 
are presented in Section III. Section IV then describes in some detail the structure 
and organization of the FORTRAN code generation, The discussion in Section V 
finally points out the benefits of employing symbolic computer languages for 
FORTRAN code generation. 

II. PHASE INTEGRAL QUANTIZATION CONDITIONS 

The phase integral quantization condition for present problem, that is for a 
potential V(d) of periodicity of 271 with m different wells and barriers, is well known 
[9], and is obtained by following changes in the coefficients (C, , C-) in the phase 
integral wave function of the form 
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where y(d) is the phase function and c the phase reference point, subject io 
boundary conditions 

Y(0) = Y(2n). 
(2) 

Y’(0) = Y’(2n). 

The phase reference point is always chosen to bc a classical turning point, defined 
as a zero of (L- V(d)). For a potential well with classical turning points at c and 
h. Eq. (1) may also be written as 

Y(q5,= [q($)]y”’ B- cxp 
[ ( 

+i+$i+#Mij)+B ;,(-q-$w#Qj (3) 

so that the connection from h to c is given by 

where 

B= (; (,Oiz) 

(4) 

In the phase integral approximation, the function ~(4) consists of contributions or 
various orders 

4(~)=y’1’(~)+q’3)(~)+ “‘. i7j 

The first-order term is 

y”‘($h)= [(E- V(r$)).!F(d)]’ 2. 1x1 

where F(d) is the effective rotational constant, and the functional form of all higher 
order terms is such that the first-order and all higher order phase integrals of 
Eq. (6) may be expressed in the general form 

where k is an integer, - 1: 0, I, 2,..., and ,fk(~) some analytic combination of F(4). 
C’(4), and their derivatives. The integration path I‘ is a closed loop in the complex 
plane which encircles the two turning points under consideration and avoids the 
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turning points where the integrand has nonintegrable singularities for k > 0. The 
single valuedness of the integrand requires branch cuts from each of the turning 
points and for the integrals of Eq. (9) the cut joins the two turning points. The 
evaluation of these, in general complex, phase integrals by an efficient and reliable 
quadrature procedure is described in Refs. [6-81. 

The matrix connecting the coefficients of the wave functions with reference points 
at two turning points associated with a potential barrier, c and d say, may be 
written as [9] 

C=eP [l+e-2P]1’2 

( 

. 
i [l + ;h, 1/* 1 ’ 

where again the phase integrals across the barrier 

may be computed routinely. 
Repeated application of the connection formulae above and application of the 

boundary condition, Eq. (2), then allow the general quantization condition to be 
written as 

det IC,BIC,B, . ..C.B,-1) =O, (12) 

where the matrices B and C depend on the phase integrals across the wells and 
barriers, respectively, of the potential. However, while Eq. (12) is very general and 
compact, it is not amenable for numerical computation. For this purpose, for a 
fixed m, the determinant can be transformed into a transcendental expression 
involving the relevant phase integrals. For illustration, Eqs. (13)-(15) display the 
quantization condition function for a problem with two different wells and barriers, 
three different wells and barriers, and a symmetric case of three wells and barriers, 
respectively. 

e(~(3)-8(2)-8(l))(~~~~~~cos(cl(3)+a(2)+cr(l)) 

+ dm COS(M(~) + a(2) - M( 1)) + 2 dm cos(a(3) - ~((2) + a(l)) 

+Jmcos(a(3)-a(2)-a(l))-1 (14) 

,(-38(l)) (J~(e(28(11) + 1) COS(341))) + 3 Jm cos(a(1)) - 1, (15) 

where the indices 1, 2, 3 denote each additional different well or barrier. 
It is obvious that a FORTRAN code that contained quantization conditions for 

all possible variations of symmetry and values of m would clearly be very clumsy 
indeed. To avoid this, a very compact MACSYMA program based on Eq. (12) can 
have the desired value of m and appropriate information about symmetry as input. 
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It would then generate the quantization condition and the FORTRAN code 
required to compute the desired eigenvalues, thus reducing the programming work 
considerably. 

The present scheme carries these ideas even further, as there is no need to specify 
the value of m. The program starts by reading the input information about the 
potential function under MACSYMA, which is subsequently utilized to analyze the 
potential and the first task is to determine the number of wells and barriers. Equa- 
tions (14) and (15), which have the same number of wells and barriers but different 
periodicity, show that, apart from the periodocity of 27e, any additional peris 
or symmetry of the potential simplifies the quantization condition and reduces final 
numerical computation. Therefore, symbolic tests for these properties, such as if 
V(4) = V(@ + n) is true for a higher periodicity or, if I’($) = V( - 4) is true for-even 
symmetry, are performed in order to simplify the quantization condition as much 
as possible. 

Qn the other hand, the graphical output for the potential, determinative of t 
appropriate energy range based on the positions and maxima and minima values 
of wells and barriers of the problem, and initial values for classical turning points, 
which are crucial for the phase integral method, require numerical calculations 
which at this stage are also carried out under MACSYMA. Good initial values for 
the classical turning points are obtained by choosing the energy slightly on top of 
all barriers and starting a Newton-Raphson search for complex turning points with 
small imaginary component and the real part equal to the position of the barrier 
top. 

The number of wells and barriers and the symmetry of the problem determine the 
appropriate phase integral quantization condition for the problem, which is then 
generated with MACSYMA. The FORTRAN window facility and some locally 
developed auxiliary tools are used to automatically generate the FORTRAN code 
which performs major part of numerical computation. One crucial choice in the 
whole procedure is the allocation of the work between symbolic and numeri . 
software. In the present application, MACSYMA is used to calculate, simplify, a 
generate the quanfization condition and the FORTRAN code but the final quad- 
rature for the phase integrals is more efficiently performed by numerical quadrature 
routines written in FORTRAN. 

While the FORTRAN code may be saved for later use, in principle it is 
as a disposable utility; for each execution of the program a new code is ge 
compiled, linked, and executed. This is justified because, for numerically intensive 
tasks, the final execution of the code is responsible for the major part of the 
required computer time., For codes such as in the present applications, the required 
total CPU time is not significant and the main advantage of the approach is the 
speed and ease of programming as the user never has to write a single line of 
FORTRAN by himself. The output from the program consists of numerical tables 
of energy eigenvalues or transition frequencies for spectroscopical applications, 
together with graphical outputs showing the potential and all the energy levels, and 
the phase integral quantization condition as a function of energy. The latter 
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provides an illustration of the pattern of energy levels which facilitates interpreta- 
tions regarding the degeneracies of the states. 

III. RESULTS 

Vibrational spectroscopy features many potentials with wells and barriers, such 
as those associated with restricted rotation [lo], or those involved with 
unimolecular conformer interconversion reactions between species which differ by a 
rotation around a single C-C, C-O, or C-S bond [ 111. While more extensive 
applications to torsional vibrations are published elsewhere [ 121, a sample problem 
of each type, illustrating the versatility and clarity of presentation of the present 
procedure, is presented here. The first potential considered is the asymmetric 
torsional potential function governing internal rotation about the C-C bond of 
chloroacetyl fluoride [13]. The model potential for this problem is of the form 

V(4) = i (~,/2)(1 - W$)), (16) 
i=l 

where the torsional coordinate is 4 and the foldness of the barrier is i. For an asym- 
metric potential function, the internal rotation constant F(d) varies as a function of 
the internal rotation angle and this dependence on the dihedral angle is 
approximated by a Fourier series, 

F(d) = F(J + c Fi cos($). (17) 

The values for parameters used in Eqs. (16) and (17) are listed in Table I, and the 
potential energy function and the energy levels are shown in Fig. 1, with energy 
eigenvalues and transition frequencies listed in Table II. It is clear that all the lower 
energy levels of the problem are located in the deep well around the torsion angle 
equal to zero and are, therefore, nondegenerate levels associated with the tram 

TABLE I 

Potential Parameters V, (i= 1, 6) and Internal Rotation Constant 
Parameters F, (i = 0, 6) (in cm-‘) for Chloroacetyl Fluoride 

Vi Value F; Value 

FL? 1.066340 
VI 350.0 F-1 0.136518 
V2 306.0 FZ 0.102467 
V3 420.0 F3 -0.000174 
V4 44.0 F4 0.008006 
V5 0. F5 -0.000576 
VA 2.0 F, 0.000696 
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TORSION ANGLE 

FIG. 1. Schematic drawing of the potential and computed energy levels (in cm-‘) for chloroacetvl 
fluoride. 

conformer. This can be verified from Fig. 2 which plots the left-hand side of the 
appropriate phase integral quantization condition function as function of energy; a 
zero value of the function plotted corresponds to an eigenlevel. The lower zeros of 
this function at energies listed in Table II are clearly simple zero associated with 
sin-like function crossings associated with the simple phase integral qna~ti~atio~ 
condition for a potential well. However, at higher energies the quantization condi- 
tion is a function involving phase integrals across all the wells and barriers of the 
problem implying more variety in the behaviour of the higher levels. For instance, 
at energies above 540 cm ~ ‘, there is a possibility of finding doubly degenerate levels 
associated with the gauche conformer lying in the two shallow wells. These levels 
can easily be identified from the behaviour of the quantization condition function. 
See, for instance, the levels at 575 and 549 cm-“. The zero of t 
condition function for the former level is a normal crossing as 
simple zero but the quantization condition at 549 cm- ’ is clearly a 
corresponding to double zero and thus a gauche level lying in the two 
A detailed investigation of the quantization condition function clearly allows the 
identification of nondegenerate tram levels and doubly degenerate gauche levels. 

The second potential considered here is the symmetric threefo potential 
governing the internal rotation of the methyl group in acetaldehyde, tained on 
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TABLE II 

Energy Levels E, and Transition Frequencies (in cn-‘) for Chloroacetyl Fluoride 

” E” Conformer 

0 44.23 Trans 
1 130.70 Trans 
2 213.87 Trans 
3 293.61 Trans. 
4 369.80 Trans 
5 442.28 Trans 
6 510.85 Trans 
7 549.00 Gauche 
8 575.68 Trans 
9 596.86 Gauche 

10 635.11 Trans 
11 642.02 Gauche 
12 684.11 Gauche 
13 689.87 Trans 
14 722.20 Gauche 
15 738.57 Trans 
16 745.07 Gauche 

Transition 

86.48 
83.16 
79.74 
76.19 
72.48 
68.57 

64.83 

59.43 

54.76 

48.70 

Frequency 

47.86 

45.16 
42.09 

38.08 

31.87 

SiO abo 760 6 0 560 4lio 360 2iio Id0 

ENERGY 

FIG. 2. Schematic drawing of the phase integral quantization condition as function of energy 
(in cm-‘) for chloroacetyl fluoride. 



'1‘ABI.E III 

Energy Ixvles E. (in cm- ‘) for Acetaldehydc 

L E, IAxcl Symmetr> 
---_- -..-~.-..- _ - - 

0 77.52 A 
I. 2 77.52 E 
3, 4 221.93 E 
s 223.11 .A 
6 332.19 A 

7. x 347.09 E 
9. 10 426.07 E R 
!I 482.97 .1 R 
12 496.92 .,I R 

13.14 581.36 i: R 

substituting i= 3 in Eq. (16). The energy levels listed in Table III computed from 
the parameter values V, = 400.5 cm ’ and F, = 7.476 cm ’ agree very we11 with 
experimental results [ 141; this potential and the resulting energy levels arc shown 
in Fig. 3. Due to the threefold symmetry of the potential, it is now expected that 
the lowest level should be triply degenerate, and indeed the quantization condition 
function of Fig. 4 clearly exhibits third-order polynomial behaviour at 77.52 cm ‘. 
The next two groups of zeros show how the splitting due to tunneling sets in. The 

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 

TORSION ANGLE 
FKi. 3 Schematic drawing of the potential and computed energy leccis fin cm ‘) for acctaldchytie. 
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ENERGY 

FIG. 4. Schematic drawing of the phase integral quantization condition as function of energy 
(in cm-‘) for acetaldehyde. 

energy levels in Fig. 3 at 222 cm-’ are very close to each other and consequently 
the quantization condition curve in Fig. 4 looks very much like the lowest levels. 
The group of levels near 350 cm-r, on the other hand, clearly consists of a non- 
degenerate A level, a line crossing at lower energy, followed by a doubly degenerate 
pair of E levels, the now familiar parabola. While strictly speaking, the splitting due 
to tunneling must already exist for the lowest group of levels, the splitting is too 
small to be detected experimentally, and the present calculation which is based on 
the phase integral approximation which is a medium-accuracy procedure designed 
to strike a balance between efficiency and accuracy consistent with the experimental 
spectral resolution. Finally, above all the barriers, the alternating doubly degenerate 
E and non-degenerate A free rotor levels R with the structure E, A, A, E, E,... can 
be recognized. 

The third potential studied here is the Coffey-Evans potential used to model 
dipolar coupling in polarizable liquids such as crystal displays [ 151. This potential 
has the form 

V(4) = -2b cos(24) + b2 sin’ (241, (18) 

where the parameter b, typically in the range 0 to 50, measures the strength of the 
coupling. For b = 20, the potential and the resulting eigenlevels are shown in Fig. 
5 while the energies are listed in Table IV. From the potential, it is again expected 
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TORSION ANGLE 

FIG. 5. Schematic drawing of the potential and computed energy levels for Coffey-Evans equation 
with b =20. 

that the lowest energy level should be a doubly degenerate level lying in the deeper 
wells, but associating the other energy levels with the correct member of the two 
different pairs of wells requires investigation of the quantization condition f~~cti~~ 
shown in Fig. 6. From this figure, however, it is immediately evident that all the 
other levels at energies below 350, are actually fourfold degenerate, within the 
sent resolution. The difference between the parabola for the lowest level and the 
quartic curve for the others is obvious. While two sets of doubly degenerate levels 
are expected, this fourfold degeneracy is an accidental result of the coincidence of 

TABLE IV 

Eigenvalue Clusters I?, of Coffey-Evans Equation with b = 20 

0 0.00 7 384.92 
1 77.83 8 390.99 
2 151.36 9 426.53 
3 220.06 10 452.50 
4 283.15 11 477.64 
5 339.49 12 507.51 
6 379.94 13 540.63 
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FIG. 6 Schematic drawing of the phase integral quantization condition as function of energy for 
Coffey-Evans equation with b = 20. 

the positions of the eigenvalues in the two different types of wells [16]. The exact 
eigenvalues for this problem with slightly more restricted boundary conditions [ 171 
were computed by two general purpose routines [lS-191 up to b = 30, and 
although the clustering of eigenvalues was noticed no qualitative explanation for 
the clustering which is immediately available from the present calculation was 
provided by the exact method. Table IV lists the mean positions of those level 
clusters. A calculation with b = 50, shown in Fig. 7 and in Table V, illustrates the 
robustness of the phase integral calculation. In contrast, the NAG routine starts to 

TABLE V 

Eigenvalue Clusters B, of Coffey-Evans Equation with b = 50 

n ED n E” 

0 0.50 8 1458.94 
1 198.15 9 1618.80 
2 391.71 10 1772.29 
3 581.31 11 1919.52 
4 766.45 12 2059.29 
5 947.01 13 2190.81 
6 1122.84 14 2310.64 
7 1293.82 15 2413.33 
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FIG. 7. Schematic drawing of the potential and computed energy levels for Coffey-Evans equation 
with h = 50. 

experience numerical difficulties at b = 30 due to high barriers [16]. This is nst 
the case for he phase integral calculation which is actually very accurate and 
efficient for levels deep in the wells or high above the tops of all barriers. The only 
regions where the present method experiences difficulties are the immediate 
neighbourhoods of barrier maxima or well minima where the accuracy is somewhat 
reduced and phase correction functions must be introduced. However, the present 
test cases show that the accuracy, typically four to five significant figures, often is 
sufficient for all practical purposes, and that the phase integral method due to its 
computational efficiency, versatility, and clarity of presentation, provides a cheap 
and reliable, although not a high-accuracy picture of the whole range of spectrum. 

In the above, no reference to the actual order of the phase integral approxi- 
mation used has been made because this is based solely on computational 
considerations; the cost of computation versus the accuracy obtained. While 
calculations were carried out in first and third order, all1 the results presented here 
are first-order results. 

IV. THE FORTRAN CODE GENERATION 

The FORTRAN window facility available for our use in this work is rather 
primitive. The FORTRAN command of MACSYMA [20], when applied to its 
argument, indents the line six or more columns and transforms MACSYMA expres- 
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sions into Fortran expressions, adding continuation lines as necessary. It recognizes 
the usual mathematical functions and ordinary mathematical operations, but has 
no intimate knowledge of FORTRAN syntax. For instance, while it under- 
stands 1.0, it does not consider l.dO to be a number, and a command such as 
FORTRAN(GOT0 11) “breaks” the window. The indentation of at least six 
columns is annoying because addresses cannot be placed directly in the correct 
columns. 

As a result of the above, for automatic FORTRAN code generation, several 
auxiliary MACROS were developed to manipulate the MACSYMA code and trans- 
form it into a form accepted by the FORTRAN command. Due to these tools, the 
programming which is now carried out under MACSYMA is much quicker and 
more flexible than previously under FORTRAN. The general structure of these 
tools can be written as COMMAND(LIST)$ where LIST, in the spirit of LISP 
programming lanquage, consists of members which, in turn, may be numbers, 
strings, lists themselves, MACROS, etc. A simple example of a useful tool is the one 
used to analyse input. Some lists are allocated for input, and a special tool 
investigates them. If a particular ,member of the list is symbolic, the tool creates a 
READ command to appropriate place in the FORTRAN code to be generated but 
if the entry is numeric it is used as a numerical constant possibly generating a 
PARAMETER statement in the FORTRAN code. 

As examples of more sophisticated MACROS, a DO LOOP MACRO will create 
a DO loop. The argument list for this MACRO may contain a DO loop by itself, 
and hence a flexible generation of stacking DO loops is possible. Other necessary 
tools are MACROS associated with GOT0 and OPEN commands, and MACROS 
to generate data files. The addresses which are vital parts of FORTRAN program- 
ming can have logical names in MACSYMA, and the actual replacement of the 
logical names by FORTRAN type numeric addresses, which is carried out by 
another MACRO, has to be made at a late stage of the procedure due to possible 
stacking of DO loops. The MACSYMA program is now a combination of ordinary 
MACSYMA commands and the tools described above. These lines are first 
arranged in a list, the members of which may be lists as well. In order to prepare 
this list for final FORTRAN code generation, the recursive lists are expanded to 
yield a simple list. The result from this procedure carried out by a tool collected 
from MATRIXMAP, FORTRAN, and WRITEFILE commands of MACSYMA, is 
a FORTRAN source file which after some housekeeping, such as moving the lines 
containing addresses to their proper columns, can be compiled, linked, and 
executed. 

V. DISCUSSION 

In order to develop tools and techniques for efficient and flexible generation of 
FORTRAN software for numerically intensive problems, a test case of the deter- 
mination of eigenvalues for periodic potentials has been presented. Extension to 
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other boundary condition problems is straighforward. A combination of fa~i~~t~es 
provided by MACSYMA and locally developed auxiliary tools allow a~to~at~~ 
generation of FORTRAN code without any need to resort to FORTRAN program- 
ming. The existing, efficient and tested FORTRAN hbrary subroutines can t 
be employed to carry out the numerically intensive subtasks of the problem 
while logical decisions and mathematical manipulations are performed under 
MACSYMA. As a result, the generation of very simple but computatio~a~i~ 
extremely efficient FORTRAN code becomes possible. 

The idea to perform the mathematical manipulations in SYMA prior to the 
generation of the FORTRAN code is not new [Zl, 2 wever, the present 
approach of developing auxiliary routines for all parts programming work 
provide completely new levels of possibilities for FOR rogramm~~g. Pt is 
possible to write extremely complicated mathematical pressions with full con- 
fidence that the expressions and the final FORTRAN c are free from errors. If 
editing is required, the changes can take place in ~ACSY~A and are generated 
effortlessly to all appropriate places. The ease of the present style of ~ro~ra~~~~~ 
also makes it possible to generate very straightforward code which the compilers 
and optimisers can make the most of. At the same time, this may present new 
challenges to the compilers and optimisers which are designed to work with the 
present style of codes. For example, during this work, several times compilers have 
refused to handle FORTRAN statements because of their ~orn~le~~ty. This is trivial 
but understandable, because in the past it would have been diffuh to code such 
expressions without making mistakes. 

While the present work deals with numerically intensi 
of other similar tools will certainly make any kind of 
much quicker, saving programming effort. For exampIe, 
have the codes written in symbolic form so that editing so as to implement changes 
in updating the library can be implemented with just a few changes in the symbohc 
language level. 

The combination of the possibilities of symbolic computation and the efhc 
of numerical FORTRAN software provides an enormous computing power a 
with the advent of FORTRAN which superceded actual manipulation of machine 
instructions, the new approach reduces the explicit use of FORTRAN, thus setting 
up a new hierarchy level of computer languages. 
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